Übung
$\frac{\left(-7x^4-8x^3-4x^2-12x+6\right)}{x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-7x^4-8x^3-4x^2-12x+6$ durch $x+5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+5;}{-7x^{3}+27x^{2}-139x\phantom{;}+683\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+5\overline{\smash{)}-7x^{4}-8x^{3}-4x^{2}-12x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+5;}\underline{\phantom{;}7x^{4}+35x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}7x^{4}+35x^{3};}\phantom{;}27x^{3}-4x^{2}-12x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n;}\underline{-27x^{3}-135x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-27x^{3}-135x^{2}-;x^n;}-139x^{2}-12x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n;}\underline{\phantom{;}139x^{2}+695x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}139x^{2}+695x\phantom{;}-;x^n-;x^n;}\phantom{;}683x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n-;x^n;}\underline{-683x\phantom{;}-3415\phantom{;}\phantom{;}}\\\phantom{;;;-683x\phantom{;}-3415\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-3409\phantom{;}\phantom{;}\\\end{array}$
$-7x^{3}+27x^{2}-139x+683+\frac{-3409}{x+5}$
Endgültige Antwort auf das Problem
$-7x^{3}+27x^{2}-139x+683+\frac{-3409}{x+5}$