Übung
$\frac{\cot\left(x\right)}{\cot\left(x\right)-\tan\left(x\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. cot(x)/(cot(x)-tan(x)). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=\cot\left(x\right), b=-\sin\left(x\right), c=\cos\left(x\right), a+b/c=\cot\left(x\right)+\frac{-\sin\left(x\right)}{\cos\left(x\right)} und b/c=\frac{-\sin\left(x\right)}{\cos\left(x\right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\cot\left(x\right), b=-\sin\left(x\right)+\cot\left(x\right)\cos\left(x\right), c=\cos\left(x\right), a/b/c=\frac{\cot\left(x\right)}{\frac{-\sin\left(x\right)+\cot\left(x\right)\cos\left(x\right)}{\cos\left(x\right)}} und b/c=\frac{-\sin\left(x\right)+\cot\left(x\right)\cos\left(x\right)}{\cos\left(x\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}.
Endgültige Antwort auf das Problem
$\frac{\cos\left(x\right)^2}{-1+2\cos\left(x\right)^2}$