Übung
$\frac{\:2x^4-5x^3+7x^2-3x+1}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-5x^3+7x^2-3x+1$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}2x^{3}-7x^{2}+14x\phantom{;}-17\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}2x^{4}-5x^{3}+7x^{2}-3x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-2x^{4}-2x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}-2x^{3};}-7x^{3}+7x^{2}-3x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}7x^{3}+7x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}7x^{3}+7x^{2}-;x^n;}\phantom{;}14x^{2}-3x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-14x^{2}-14x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-14x^{2}-14x\phantom{;}-;x^n-;x^n;}-17x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{\phantom{;}17x\phantom{;}+17\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}17x\phantom{;}+17\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}18\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}-7x^{2}+14x-17+\frac{18}{x+1}$
Endgültige Antwort auf das Problem
$2x^{3}-7x^{2}+14x-17+\frac{18}{x+1}$