Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Anwendung der trigonometrischen Identität: $\tan\left(\theta \right)$$=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}$
Learn how to solve faktorisierung problems step by step online.
$\cot\left(x\right)+\frac{\sin\left(x\right)}{\cos\left(x\right)}$
Learn how to solve faktorisierung problems step by step online. cot(x)+tan(x). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Das kleinste gemeinsame Vielfache (LCM) einer Summe algebraischer Brüche besteht aus dem Produkt der gemeinsamen Faktoren mit dem größten Exponenten und den ungewöhnlichen Faktoren. Um das kleinste gemeinsame Vielfache (LCM) zu erhalten, setzen wir es in den Nenner jedes Bruchs, und im Zähler jedes Bruchs addieren wir die Faktoren, die wir zur Vervollständigung benötigen.