Übung
$\cot\left(x\right)\cot\left(y\right)-1$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. cot(x)cot(y)-1. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\cot\left(y\right), b=\cos\left(x\right) und c=\sin\left(x\right). Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\cos\left(x\right), b=\cos\left(y\right) und c=\sin\left(y\right).
Endgültige Antwort auf das Problem
$\frac{\cos\left(y\right)\cos\left(x\right)-\sin\left(y\right)\sin\left(x\right)}{\sin\left(y\right)\sin\left(x\right)}$