Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=2$ und $x=\mathrm{csch}\left(4x^3+1\right)$
Wenden Sie die Formel an: $x^1$$=x$
Anwendung der trigonometrischen Identität: $\frac{d}{dx}\left(\mathrm{csch}\left(\theta \right)\right)$$=-\frac{d}{dx}\left(\theta \right)\mathrm{csch}\left(\theta \right)\mathrm{coth}\left(\theta \right)$, wobei $x=4x^3+1$
Wenden Sie die Formel an: $x\cdot x$$=x^2$, wobei $x=\mathrm{csch}\left(4x^3+1\right)$
Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen
Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=3$
Wenden Sie die Formel an: $ab$$=ab$, wobei $ab=-8\cdot 3\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$, $a=-8$ und $b=3$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!